Protein tyrosine phosphatase-σ regulates hematopoietic stem cell-repopulating capacity.
نویسندگان
چکیده
Hematopoietic stem cell (HSC) function is regulated by activation of receptor tyrosine kinases (RTKs). Receptor protein tyrosine phosphatases (PTPs) counterbalance RTK signaling; however, the functions of receptor PTPs in HSCs remain incompletely understood. We found that a receptor PTP, PTPσ, was substantially overexpressed in mouse and human HSCs compared with more mature hematopoietic cells. Competitive transplantation of bone marrow cells from PTPσ-deficient mice revealed that the loss of PTPσ substantially increased long-term HSC-repopulating capacity compared with BM cells from control mice. While HSCs from PTPσ-deficient mice had no apparent alterations in cell-cycle status, apoptosis, or homing capacity, these HSCs exhibited increased levels of activated RAC1, a RhoGTPase that regulates HSC engraftment capacity. shRNA-mediated silencing of PTPσ also increased activated RAC1 levels in wild-type HSCs. Functionally, PTPσ-deficient BM cells displayed increased cobblestone area-forming cell (CAFC) capacity and augmented transendothelial migration capacity, which was abrogated by RAC inhibition. Specific selection of human cord blood CD34⁺CD38⁻CD45RA⁻lin⁻ PTPσ⁻ cells substantially increased the repopulating capacity of human HSCs compared with CD34⁺CD38⁻CD45RA⁻lin⁻ cells and CD34⁺CD38⁻CD45RA⁻lin⁻PTPσ⁺ cells. Our results demonstrate that PTPσ regulates HSC functional capacity via RAC1 inhibition and suggest that selecting for PTPσ-negative human HSCs may be an effective strategy for enriching human HSCs for transplantation.
منابع مشابه
Mutation of STAT1/3 binding sites in gp130(FXXQ) knock-in mice does not alter hematopoietic stem cell repopulation or self-renewal potential.
Interleukin (IL)-6 family cytokine signaling through gp130 and signal transducer and activator of transcription (STAT) activation is believed important for early hematopoiesis. To determine whether gp130/STAT1/3 physical interaction is required, we compared hematopoietic repopulating activities of embryonic day (E)14.5 fetal liver cells from gp130(FXXQ/FXXQ) knock-in mice, which have four mutat...
متن کاملInhibition of T Cell Protein Tyrosine Phosphatase Enhances Interleukin-18-Dependent Hematopoietic Stem Cell Expansion
The clinical application of hematopoietic progenitor cell-based therapies for the treatment of hematological diseases is hindered by current protocols, which are cumbersome and have limited efficacy to augment the progenitor cell pool. We report that inhibition of T-cell protein tyrosine phosphatase (TC-PTP), an enzyme involved in the regulation of cytokine signaling, through gene knockout resu...
متن کاملReceptor protein tyrosine phosphatase gamma, Ptp gamma, regulates hematopoietic differentiation.
Murine embryonic stem (ES) cells have been a useful model system for the study of various aspects of hematopoietic differentiation. Because we had observed a sharp peak of expression of the receptor tyrosine phosphatase gamma (Ptp gamma) gene between 14 and 18 days of ES-derived embryoid body differentiation, we investigated the effect of perturbation of expression of the Ptp gamma gene on ES c...
متن کاملTie2/Angiopoietin-1 Signaling Regulates Hematopoietic Stem Cell Quiescence in the Bone Marrow Niche
The quiescent state is thought to be an indispensable property for the maintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with their particular microenvironments, known as the stem cell niches, is critical for adult hematopoiesis in the bone marrow (BM). Here, we demonstrate that HSCs expressing the receptor tyrosine kinase Tie2 are quiescent and antiapoptotic, and comprise a s...
متن کاملSCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment.
The fate of hematopoietic stem cells (HSCs) is regulated through a combinatorial action of proteins that determine their self-renewal and/or their commitment to differentiation. Stem cell leukemia/T-cell acute lymphoblastic leukemia 1 (SCL/TAL1), a basic helix-loop-helix (bHLH) transcription factor, plays key roles in controlling the development of primitive and definitive hematopoiesis during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 125 1 شماره
صفحات -
تاریخ انتشار 2015